THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics

MATH2010F Classwork 3

May 29, 2017

Name:

1. (50 points) Find the "standard forms" of the following quadratic equations and describe their solution sets.

$$
4 x^{2}-4 x y+y^{2}+y=-1
$$

Solution

The matrix associated to the quadratic form is

$$
\left[\begin{array}{cc}
4 & -2 \\
-2 & 1
\end{array}\right]
$$

Its determinant vanishes, so the curve is a parabola. To remove the mixed term, we first note that its eigenvalues are given by $\lambda_{1}=0$ and $\lambda_{2}=5$.
For each of the above eigenvalues, we solve for an associated eigenvector:
For λ_{1}, the unit eigenvector is given by $(1 / \sqrt{5},-2 / \sqrt{5})$. For λ_{2}, the unit eigenvector is given by $(-2 / \sqrt{5}, 1 / \sqrt{5})$. Therefore, by the change of variables

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\
\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right],
$$

we have

$$
\begin{aligned}
0=4 x^{2}-4 x y+y^{2}+y+1 & =5 y^{\prime 2}+\frac{1}{\sqrt{5}}\left(2 x^{\prime}+y^{\prime}\right)+1 \\
& =\left(\sqrt{5} y^{\prime}+\frac{1}{2 \sqrt{25}}\right)^{2}+\frac{2}{\sqrt{5}} x^{\prime}+\frac{99}{100}
\end{aligned}
$$

Finally, let $u=\frac{2}{\sqrt{5}} x^{\prime}$ and $v=\sqrt{5} y^{\prime}+\frac{1}{2 \sqrt{25}}$, we have

$$
0=u^{2}+v+c .
$$

where $c=99 / 100$.
2. (50 points) Show that the polar equation for the circle centered at ($a, 0$) with radius a, where $a>0$, is given by

$$
\rho(\theta)=2 a \cos \theta, \quad \theta \in(-\pi / 2, \pi / 2] .
$$

Solution Equation of such a circle in rectangular coordinates is given by

$$
(x-a)^{2}+y^{2}=a^{2}
$$

which simplifies to

$$
x^{2}+y^{2}=2 a x
$$

Apply the polar coordinate change of variables $x=\rho \cos \theta, y=\rho \sin \theta$, we have

$$
(\rho \cos \theta)^{2}+(\rho \sin \theta)^{2}=2 a \rho \cos \theta
$$

which simplifies to

$$
\rho^{2}=2 a \rho \cos \theta
$$

Since $\rho>0$, it further simplifies to

$$
\rho=2 a \cos \theta
$$

which is the polar equation of the circle.

